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 Graph Coloring
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• The coloring of a graph refers to the process of color rendering on its

vertices, so that there are no adjacent vertices of the same color.

• A vertex set containing vertices of the same color defines a color class.

• Coloring may refer to the color rendering over vertices/edges/regions
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• K-colorable graph: vertices can be colored with 𝑘 colors.

• k-chromatic graph: vertices can be colored with 𝑘 colors, but not with 𝑘 − 1.

• Chromatic number: 𝜒 (𝐺) = 𝑘.
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• A uniquely colorable graph is the one that has a specific set of color classes,

without being able to define a different set.

• There are special cases for 𝑘 = 𝑥(𝐺), where the color classes are stable.

• General case for 𝑘 > 𝑥(𝐺), 𝐺 is colored with many different ways using 𝑘 colors

COLORING

3 color classes:

{𝑣1}, {𝑣2, 𝑣5}, {𝑣3, 𝑣4}
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• A graph is critical if it holds: 𝜒(𝐻) < 𝑥 (𝐺), ∀ 𝐻 ⊂ 𝐺.

• A graph is 𝑘 -critical if 𝐺 is 𝑘 -chromatic and critical, k ≥ 2

if 𝑥(𝐺) = 𝑘 and 𝜒(𝐺 − 𝑣) = 𝑘 − 1, ∀ 𝑛 ∈ 𝑉(𝐺).

𝜒(𝑊) = 4 → 4-chromatic and critical

→ 4-critical
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• Theorem 1:

If the graph 𝐺 is 𝑘-critical, then it holds: 𝑑 𝐺 ≥ 𝑘 − 1.

o Let us assume that 𝐺 is 𝑘-critical and it holds 𝑑(𝐺) < 𝑘 − 1.

o We will color the graph with less than 𝑘 colors.

o We select a vertex 𝑣: 𝑑(𝑣) = 𝑑(𝐺)

o Since 𝐺 is 𝑘 −colorable ⟶ 𝐺 − 𝑣 is (𝑘 − 1) −critical.

o We color the graph 𝐺 − 𝑣 with 𝑘 − 1 colors.

o Let that 𝑉1, 𝑉2, … 𝑉𝑘−1 are the corresponding color classes.

o Since 𝑑(𝑣) = 𝑑(𝐺) < 𝑘 − 1 there should exist a color class 𝑉𝑖 such that

vertex 𝑣 not being adjacent to any other vertex of that class.

o Hence, vertex 𝑣 can be colored with color 𝑖, and hence the graph 𝐺 can

be colored with 𝑘 − 1 colors, that is a contradiction.
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• A Perfect graph is the graph in which it holds that clique number

𝜔(𝐻) = 𝑥(𝐻) color number for each induced subgraph 𝐻 of graph 𝐺.

 The clique of a graph 𝐺 is the maximum complete subgraph of 𝐺, and

the click number 𝜔(𝐺) denotes the clique-order.

• A k-edge Colorable graph is a graph which its edges can be colored with

𝑘 colors, such that any two edges having a common vertex to have different

colors.

• In case where a graph 𝐺 is 𝑘-edge colorable but it is not 𝑘 − 1-edge colorable

is called k-edge Chromatic, and the value of 𝑘 is called edge chromatic

number, or, chromatic index denoted 𝑥’(𝐺).

• If a graph can be colored uniquely on its edges such that the color classes to

remain constant, the graph is called uniquely edge-colorable.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of 𝑛 vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 2:

A graph 𝐺 of max degree 𝐷 is (𝐷 + 1)-colorable.

o If the graph 𝐺 has 𝑛 = 𝐷 + 1 vertices then the truth is obvious.

o Let that the Theorem holds for 𝑛 = 𝑘 − 1 vertices.

o There should be proven that the Theorem holds for 𝐺 of order 𝑘.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of 𝑛 vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 2:

A graph 𝐺 of max degree 𝐷 is (𝐷 + 1)-colorable.

o If from the graph 𝐺 we delete a vertex of degree at most 𝐷, then it

remains a subgraph of degree at most 𝐷 of 𝑛 − 1 vertices, that is

(𝐷 + 1) − colorable, based on the hypothesis of induction.

o Based on this subgraph, 𝐺 can be colored assigning to vertex 𝑣 a color

different from the 𝐷 neighboring vertices.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 3 (Brooks 1941):

A simple connected non-complete graph 𝐺 of max degree 𝐷 ≥ 3
is 𝐷-colorable.

COLORING



 Vertex Coloring

12

• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 4:

Every plane graph is 6-colorable.

o If the graph 𝐺 has 𝑛 < 7 vertices then the truth is obvious.

o Let that the Theorem holds for 𝑛 = 𝑘 − 1 vertices.

o There should be proven that the Theorem holds for 𝐺 of order 𝑘.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 4:

Every plane graph is 6-colorable.

o Let us assume that the graph is simple graph.

o Corollary on plane graphs: “each plane graph has at least one vertex 𝑣
of 𝑑 𝑣 ≤ 5”

o From the Corollary, this graph contains at least one vertex of 𝑑 𝑣 ≤ 5
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 4:

Every plane graph is 6-colorable.

o If we delete from the graph 𝐺 a vertex 𝑣 of degree at most 5, then

there remains a graph of 𝑛 − 1 vertices, which is 6-colorable according

to the hypothesis of the induction.

o Based on this subgraph we can color the graph using a color for 𝑣
different from the colors of its 5 neighbors.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o If the graph 𝐺 has 𝑛 < 6 vertices then the truth is obvious.

o Let that the Theorem holds for 𝑛 = 𝑘 − 1 vertices.

o There should be proven that the Theorem holds for 𝐺 of order 𝑘.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o Let us assume that the graph is simple graph.

o Corollary on plane graphs: “each plane graph has at least one vertex 𝑣
of 𝑑 𝑣 ≤ 5”

o From the Corollary, this graph contains at least one vertex of 𝑑 𝑣 ≤ 5
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o If we delete from the graph 𝐺 a vertex 𝑣 of degree at most 5, then

there remains a graph of 𝑛 − 1 vertices, which is 5-colorable according

to the hypothesis of the induction.

o If 𝑑(𝑣) < 5 then the proof is complete.

o Let that 𝑑(𝑣) = 5 and the neighboring vertices of 𝑣 are 𝑣1, 𝑣2, … , 𝑣5.

o If two of these vertices have the same color then the proof is complete.

COLORING



 Vertex Coloring
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o So, it lefts the case where the five vertices 𝑣𝑖 are colored respectively

with 5 different colors 𝑐𝑖 (1 ≤ i ≤ 5).

o We define a subgraph 𝐻𝑖𝑗 of 𝐺 consisted by the vertices of 𝐺 colored

by colors c𝑖 and 𝑐𝑗 and the edges of 𝐺 connecting a vertex of color

𝑐𝑖 with a vertex of color 𝑐𝑗.

o Hence we have two cases:
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 Vertex Coloring

19

• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o Case 1:

 Vertices 𝑣1 and 𝑣3 do not belong to the same component of  𝐻1,3
 Hence, a mutual swap of  the colors can be performed on the vertices 

belonging to the component, let the one that belongs vertex 𝑣1.

 Thus, 𝑣1 can be colored with color 𝑐3 instead of  𝑐1, and hence 

𝑣1 can be colored with color 𝑐1
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o Case 2:

 Vertices 𝑣1 and 𝑣3 belong to the same component of  𝐻1,3
 In that case there exist a cycle 𝐶 = (𝑣, 𝑣1, … , 𝑣3, 𝑣)
 If  so, vertex 𝑣2 (𝑣4 respectively) belongs in the inside (outside 

respsecively) if  cycle 𝐶, and hence there does not exist any path from 

𝑣2 to 𝑣4 in subgraph 𝐻2,4.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 5:

Every plane graph is 5-colorable.

o Case 2:

 Vertices 𝑣1 and 𝑣3 belong to the same component of  𝐻1,3
 In that case there exist a cycle 𝐶 = (𝑣, 𝑣1, … , 𝑣3, 𝑣)
 Thus, a mutual swap of  the color can be performed  on the vertices 

contained in component 𝐻2,4 , that include vertex 𝑣2.

 Hence, again, vertex 𝑣2 can be colored with color 𝑐4 instead of  𝑐2,
and then vertex 𝑣 can be colored with color 𝑐2.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.

o Set the degree sequence and below 

set the numbers 0,1,2, …
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.

o Set the degree sequence and below 

set the numbers 0,1,2, …

COLORING

𝑑1 𝑑2 𝑑3 … 𝑑𝑘+1 …

0 1 2 … 𝑘 …
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.

o Set the degree sequence and below 

set the numbers 0,1,2, …

COLORING

𝑑1 𝑑2 𝑑3 … 𝑑𝑘+1 …

0 1 2 … 𝑘 …

Repeat until 𝑘 is placed 

above a less degree
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.

o Set the degree sequence and below 

set the numbers 0,1,2, …

COLORING

𝑑1 𝑑2 𝑑3 … 𝑑𝑘+1 …

0 1 2 … 𝑘 …

…after that, no more 

colors needed!!!
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 6:

For a graph 𝐺 there exist a number 𝑘, such that 𝐺 contains 𝑘 vertices of

degree at least 𝑘. Then 𝐺 can be colored with at most 𝑘 colors.

o Set the degree sequence and below 

set the numbers 0,1,2, …

COLORING

𝑑1 𝑑2 𝑑3 … 𝑑𝑘+1 …

0 1 2 … 𝑘 …

𝑘 is upper bound 

of  𝑥(𝐺)!!!
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 7 (Four Colors Theorem):

Every plane graph is 4-colorable:

o The proof is not include in any educational book!
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Theorem 8:

Every graph of genus 𝑔 ≥ 1 is ℎ-colorable, where:

ℎ =
7+ 1+48𝑔

2
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• How many colors are required to color a graph?

o ... each 𝑘-chromatic graph is multi-partite graph of 𝑝 subsets of vertices,

where (𝑘 ≤ 𝑝)

o If the graph is consisted of n vertices, then 𝑥 𝐺 ≤ 𝑛, while, if the

graph 𝐾𝑟 (clique) is contained as subgraph in the graph then 𝑥 𝐺 ≥ 𝑟.

• But … may a random graph be colored with less than 𝑘 colors?

• Chromatic Numbers for most Common Graph Types:

COLORING

𝐺 𝐾𝑛 𝑁𝑛 𝑊2𝑛 𝑊2𝑛+1 𝑃𝑛 𝑇 𝐶2𝑛 𝐶2𝑛+1 𝑄𝑛 𝐾𝑚,𝑛

𝑋(𝐺) 𝑛 1 4 3 2 2 2 3 𝑛 2
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

(⇒)

o Let that 𝐺 is a simple plane graph. Then it is impled that there exists

dual of 𝐺,  𝐺 that is map.

o If 𝐺 is 𝑘-colorable, then since every region of  𝐺 contains only one

vertex of 𝐺, the regions of  𝐺 can be colored such that each region to

inherit the colors of the corresponding vertex of 𝐺.

o Since any two adjacent vertices of 𝐺 are colored wit different colors, it is

implied that any two adjacent regions of  𝐺 are colored with different

colors.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

(⇐)

o Let that  𝐺 is 𝑘-colorable, with respect to its regions.

o Since since every vertex of 𝐺 is contained in a region of  𝐺, it is implied

that the vertices if 𝐺 can be colored with 𝑘 colors, assigning to each

vertex the color of the regions it is contained.

o Since any two adjacent regions of  𝐺 are colored with different colors it

is implied that any two adjacent vertices of 𝐺 are colored with different

colors.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇒)

o Since 𝐺 is 2-colorable with respect to its edges it is implied that each

vertex 𝑣 is surrounded by even number of regions.

o Thus, each vertex has even degree → The graph is Eulerian.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.

o Arbitrarily select a region 𝑟 which we color as “blue”
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.

o Arbitrarily select a region 𝑟 which we color as “blue”

o Draw a Jordan curve from a point 𝑥 in 𝑟 to finishing in 𝑟’, crossing no

edges in the middle.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.

o Arbitrarily select a region r which we color as “blue”

o If this curve crosses odd number of edges of 𝐺, then the region 𝑟’ is
colored as “green”, or as “blue” otherwise.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.

o Arbitrarily select a region r which we color as “blue”

o We assume a closed Jordan curve and proving that it crosses even number

of edges.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Corollary:

The Four Colors Theorem for the coloring of regions of maps equals the

coloring (four color coloring) of the vertices of simple plane graphs.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

(⇐)

o Coloring the regions of 𝐺.

o Arbitrarily select a region r which we color as “blue”

o The proof can be done inductively with respect to the number of vertices

contained in the interior of this curve, taking into account that the degree

of each vertex is even.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇒)

o Given a region 𝑟 of 𝐺, the neighboring regions should be colored with 2
alternating colors.

o Thus, in order to adequate 3 colors, each region should be surrounded by

even number of regions.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The inverse direction will be proven regarding the geometrical dual of the

graph.

o If the connected graph 𝐺 is plane and simple, while each region is

surrounded by triangles and each vertex has even degree, then

it is 3-colorable.
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The three colors are denoted as “𝑎, 𝑏, 𝑐”

o If 𝐺 is Eulerian, the regions of 𝐺 can be colored with two colors, “blue”

and “green”.

o The demanded 3-coloring, can be achieved as:
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The three colors are denoted as “𝑎, 𝑏, 𝑐”

o If 𝐺 is Eulerian, the regions of 𝐺 can be colored with two colors, “blue”

and “green”.

o The demanded 3-coloring, can be achieved as:

1. Select a region 𝑟 (let “blue”).
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The three colors are denoted as “𝑎, 𝑏, 𝑐”

o If 𝐺 is Eulerian, the regions of 𝐺 can be colored with two colors, “blue”

and “green”.

o The demanded 3-coloring, can be achieved as:

2. Its vertices are colored by 3 colors (clockwise 𝑎, 𝑏, 𝑐).
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The three colors are denoted as “𝑎, 𝑏, 𝑐”

o If 𝐺 is Eulerian, the regions of 𝐺 can be colored with two colors, “blue”

and “green”.

o The demanded 3-coloring, can be achieved as:

3. Select another region (let “blue”).
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• Theorem 9:

Let a simple connected graph 𝐺 and  𝐺 its dual. 𝐺 is 𝑘-colorable if and

only if  𝐺 is 𝑘-colorable with respect to its regions.

• Theorem 10:

A map 𝐺 is 2-colorable with respect to its regions iff 𝐺 is Eulerian

• Theorem 11:

A regular of degree 3 graph 𝐺 is 3-colorable with respect to its regions iff

each region of 𝐺 is surrounded by even number of edges.

(⇐)

o The three colors are denoted as “𝑎, 𝑏, 𝑐”

o If 𝐺 is Eulerian, the regions of 𝐺 can be colored with two colors, “blue”

and “green”.

o The demanded 3-coloring, can be achieved as:

4. Repeat the procedure…
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 13:

For a complete bipartite graph it holds:

𝑥′ 𝐾𝑚,𝑛 = max 𝑚, 𝑛 = 𝐷 𝐾𝑚,𝑛

o Without loss of generality, let that 𝑚 ≥ 𝑛, and that the 𝑚 vertices are

located on a straight line, while the 𝑛 vertices are located below over

another straight line.

o Coloring is achieved by coloring sequentially (clockwise) the edges adjacent 

to the 𝑛 vertices with colors {𝟏, 𝟐,… ,𝒎}, {𝟐, 𝟑,… ,𝒎, 𝟏}, … , {𝒏,… ,𝒎, 𝟏,… , 𝒏 − 𝟏}.

o The Theorem holds also for non complete graphs.
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 14:

For a complete graph 𝐾𝑛 it holds:

𝑥′ 𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 14:

For a complete graph 𝐾𝑛 it holds:

𝑥′ 𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

o The graph can be colored with n colors placing the vertices in shape of

regular 𝑛 −polygon, and coloring clockwise the edges in the perimeter.

o The rest of the edges are colored with the same color that is colored the

parallel to the perimeter.

o The graph 𝐾𝑛 𝑖s 𝑘-edge chromatic because the maximum number of edges

of the same color is (𝑛 − 1)/2
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 14:

For a complete graph 𝐾𝑛 it holds:

𝑥′ 𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

o The graph 𝐾𝑛 can be considered as the sum of 𝐾𝑛−1 and 𝐾1.

o If the edges of 𝐾𝑛−1 have been colored according to the previous

approach, then from each vertex a color is missing.

o For a each vertex will be missing a different color.

o Thus, the edges adjacent to 𝐾1, will be colored with these colors.
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 14:

For a complete graph 𝐾𝑛 it holds:

𝑥′ 𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

• Theorem 15 (Vizing 1965):

If 𝐺 is a simple multigraph then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 +𝑚(𝐺)

Maximum multiplicity 𝑚(𝐺) is the maximum number of  edges 

joining any pair of  vertices in a multigraph.
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• Theorem 12 (Vizing 1964):

Let a simple graph 𝐺 of maximum degree D 𝐺 , then it holds:

𝐷 𝐺 ≤ 𝑥′ 𝐺 ≤ 𝐷 𝐺 + 1

• Theorem 14:

For a complete graph 𝐾𝑛 it holds:

𝑥′ 𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 − 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

• Theorem 16 (Tait 1980):

A map 𝐺 is 4-colorable w.r.t regions iff it is 3-edge colorable.
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• Is it possible to color vertices/edges/regions with k colors?
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• Is it possible to color vertices/edges/regions with k colors?

• By how many ways a given graph can be colored using k colors?

• Two graphs are considered to be differently colored if at least one vertex has

different color.

• Birkhoff (1912) → Four Color Thoerem.

• Chromatic Polynomial (Chromatic Function) refers to the number of ways

a given graph 𝐺 can be colored with 𝑘 colors, and is denoted as 𝑷𝑮(𝒌).

𝑃𝑁𝑛(𝑘) = 𝑘𝑛

𝑃𝑇 𝑘 = 𝑘 𝑘 − 1 𝑛

𝑃𝐾𝑛(𝑘) = 𝑘(𝑘 − 1)… (𝑘 − 𝑛 + 1)
𝑃𝐺 𝑘 = 0, if 𝑘 < 𝜒(𝐺)
𝑃𝐺 𝑘 > 0, if  𝑘 ≥ 𝜒(𝐺)

𝑃𝐺 𝑘 > 0, if 𝐺 is simple plane graph
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• Theorem 17:

Let that 𝑣, 𝑤 are non adjacent vertices of  a simple graph 𝐺.

If  𝐺1 = 𝐺 + (𝑣, 𝑤) and 𝐺2 = 𝐺/(𝑣, 𝑤), then it holds:

𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘)

o The graph 𝐺1 is constructed joining the vertices 𝑣 and 𝑢, while 𝐺2 is

constructed merging the vertices 𝑣 and 𝑢 considering the induced graph of

the constructed multigraph.

o In each coloring of  graph 𝐺, the vertices 𝑣 and 𝑢 may or may not have the 

same color.
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• Theorem 17:

Let that 𝑣, 𝑤 are non adjacent vertices of  a simple graph 𝐺.

If  𝐺1 = 𝐺 + (𝑣, 𝑤) and 𝐺2 = 𝐺/(𝑣, 𝑤), then it holds:

𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘)

o The graph 𝐺1 is constructed joining the vertices 𝑣 and 𝑢, while 𝐺2 is

constructed merging the vertices 𝑣 and 𝑢 considering the induced graph of

the constructed multigraph.

o In each coloring of  graph 𝐺, the vertices 𝑣 and 𝑢 may or may not have the 

same color.

 If  𝑣 and 𝑢 have different colors, the number of  different coloring is 

retained (i.e., 𝑃𝐺1 𝑘 ) if  the vertices are joined.
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• Theorem 17:

Let that 𝑣, 𝑤 are non adjacent vertices of  a simple graph 𝐺.

If  𝐺1 = 𝐺 + (𝑣, 𝑤) and 𝐺2 = 𝐺/(𝑣, 𝑤), then it holds:

𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘)

o The graph 𝐺1 is constructed joining the vertices 𝑣 and 𝑢, while 𝐺2 is

constructed merging the vertices 𝑣 and 𝑢 considering the induced graph of

the constructed multigraph.

o In each coloring of  graph 𝐺, the vertices 𝑣 and 𝑢 may or may not have the 

same color.

 If  𝑣 and 𝑢 have same color, the number of  different coloring is retained 

(i.e., 𝑃𝐺2(𝑘)) if  the vertices are merged.
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• Theorem 17:

Let that 𝑣, 𝑤 are non adjacent vertices of  a simple graph 𝐺.

If  𝐺1 = 𝐺 + (𝑣, 𝑤) and 𝐺2 = 𝐺/(𝑣, 𝑤), then it holds:

𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘)

o The graph 𝐺1 is constructed joining the vertices 𝑣 and 𝑢, while 𝐺2 is

constructed merging the vertices 𝑣 and 𝑢 considering the induced graph of

the constructed multigraph.

o In each coloring of  graph 𝐺, the vertices 𝑣 and 𝑢 may or may not have the 

same color.

 If  𝑣 and 𝑢 have same color, the number of  different coloring is retained 

(i.e., 𝑃𝐺2(𝑘)) if  the vertices are merged.
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• Theorem 17:

Let that 𝑣, 𝑤 are non adjacent vertices of  a simple graph 𝐺.

If  𝐺1 = 𝐺 + (𝑣, 𝑤) and 𝐺2 = 𝐺/(𝑣, 𝑤), then it holds:

𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘)

o The relations can also be written as: 𝑃𝐺1 𝑘 = 𝑃𝐺 𝑘 − 𝑃𝐺1(𝑘)

 For graphs with many edges 𝑃𝐺(𝑘) = 𝑃𝐺1(𝑘) + 𝑃𝐺1(𝑘) is preferred.

 For graphs with less edges is preferred 𝑃𝐺1 𝑘 = 𝑃𝐺 𝑘 − 𝑃𝐺1(𝑘)

COLORING



 Chromatic Polynomial

60

• Corollary (Birkhoff 1912):

The chromatic function of a simple graph 𝐺 of order 𝑛 is a polynomial w.r.t.

𝑘 of order 𝑛. This polynomial has integer factors of alternating sign, as greater

term the 𝐾𝑛 and as stable term the 0.
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• Corollary (Birkhoff 1912):

The chromatic function of a simple graph 𝐺 of order 𝑛 is a polynomial w.r.t.

𝑘 of order 𝑛. This polynomial has integer factors of alternating sign, as greater

term the 𝐾𝑛 and as stable term the 0.

o Inductively on the number of edges of graph.

o If 𝐺 is null, then it holds 𝑃𝑁𝑛(𝑘) = 𝑘𝑛.

o Let as assume that the proposition holds for 𝑚 − 1 edges.

o We shall prove that it holds when 𝐺 has 𝑚 edges:

 Let 𝑒 a random edge of 𝐺

 The graphs 𝐺’ = 𝐺 − 𝑒 and 𝐺” = 𝐺 ⋅ 𝑒 have 𝑘 − 1 edges and

according to assumption it holds:

𝑃𝐺′ 𝑘 =  𝑖=1
𝑛−1 −1

𝑛−𝑖
𝑟𝑖𝑘

𝑖 + 𝑘𝑛, and

𝑃𝐺′′ 𝑘 =  𝑖=1
𝑛−2 −1

𝑛−𝑖−1
𝑠𝑖𝑘

𝑖 + 𝑘𝑛−1

COLORING



 Chromatic Polynomial

62

• Corollary (Birkhoff 1912):

The chromatic function of a simple graph 𝐺 of order 𝑛 is a polynomial w.r.t.

𝑘 of order 𝑛. This polynomial has integer factors of alternating sign, as greater

term the 𝐾𝑛 and as stable term the 0.

o Inductively on the number of edges of graph.

o If 𝐺 is null, then it holds 𝑃𝑁𝑛(𝑘) = 𝑘𝑛.

o Let as assume that the proposition holds for 𝑚 − 1 edges.

o We shall prove that it holds when 𝐺 has 𝑚 edges:

 Let 𝑒 a random edge of 𝐺

 The graphs 𝐺’ = 𝐺 − 𝑒 and 𝐺” = 𝐺 ⋅ 𝑒 have 𝑘 − 1 edges and

according to assumption it holds:

𝑷𝑮 𝒌 = 𝑷𝑮′ 𝒌 + 𝑷𝑮′′ 𝒌 =  𝒊=𝟏
𝒏−𝟐 −𝟏

𝒏−𝒊
(𝒓𝒊 + 𝒔𝒊)𝒌

𝒊 − 𝒓𝒏−𝟏 + 𝟏 𝒌𝒏−𝟏 + 𝒌𝒏
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• Serial Graph Coloring

Algorithm Serial Coloring

Input: An arbitrarily enumeration on the vertices of 𝐺(𝑉, 𝐸)
Output: A coloring of the graph.

1) 𝑖 ← 1
2) 𝑐 ← 1
3) Create a list 𝐿𝑖 with the adjacent colors of vertex 𝑣𝑖 in descending order.

4) While 𝑐 ∈ 𝐿𝑖
𝑐 ← 𝑐 + 1

5) Color vertex 𝑣𝑖 with color 𝑐
6) If (𝑖 < 𝑛)

𝑖 ← 𝑖 + 1
Goto Step 2

7) Else

exit()
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• Serial Graph Coloring

Algorithm Serial Coloring

Input: An arbitrarily enumeration on the vertices of 𝐺(𝑉, 𝐸)
Output: A coloring of the graph.

1) 𝑖 ← 1
2) 𝑐 ← 1
3) Create a list 𝐿𝑖 with the adjacent colors of vertex 𝑣𝑖 in descending order.

4) While 𝑐 ∈ 𝐿𝑖
𝑐 ← 𝑐 + 1

5) Color vertex 𝑣𝑖 with color 𝑐
6) If (𝑖 < 𝑛)

𝑖 ← 𝑖 + 1
Goto Step 2

7) Else

exit()
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𝒅(𝒗𝒊)
𝟐
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• Serial Graph Coloring

Algorithm Serial Coloring

Input: An arbitrarily enumeration on the vertices of 𝐺(𝑉, 𝐸)
Output: A coloring of the graph.

1) 𝑖 ← 1
2) 𝑐 ← 1
3) Create a list 𝐿𝑖 with the adjacent colors of vertex 𝑣𝑖 in descending order.

4) While 𝒄 ∈ 𝑳𝒊
𝑐 ← 𝑐 + 1

5) Color vertex 𝑣𝑖 with color 𝑐
6) If (𝑖 < 𝑛)

𝑖 ← 𝑖 + 1
Goto Step 2

7) Else

exit()

COLORING

Binary Search 

𝒅 𝒗𝒊 + 𝟏 𝒍𝒐𝒈(𝒅(𝒗𝒊))
comparisons - worst case
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• Serial Graph Coloring

Algorithm Serial Coloring

Input: An arbitrarily enumeration on the vertices of 𝐺(𝑉, 𝐸)
Output: A coloring of the graph.

1) 𝑖 ← 1
2) 𝑐 ← 1
3) Create a list 𝐿𝑖 with the adjacent colors of vertex 𝑣𝑖 in descending order.

4) While 𝑐 ∈ 𝐿𝑖
𝑐 ← 𝑐 + 1

5) Color vertex 𝑣𝑖 with color 𝑐
6) If (𝑖 < 𝑛)

𝑖 ← 𝑖 + 1
Goto Step 2

7) Else

exit()
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𝑖=1

𝑛
𝑑(𝑣𝑖)

2
+ 𝑑 𝑣𝑖 + 1 log(𝑑(𝑣𝑖))
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• Serial Graph Coloring

Algorithm Serial Coloring

Input: An arbitrarily enumeration on the vertices of 𝐺(𝑉, 𝐸)
Output: A coloring of the graph.

1) 𝑖 ← 1
2) 𝑐 ← 1
3) Create a list 𝐿𝑖 with the adjacent colors of vertex 𝑣𝑖 in descending order.

4) While 𝑐 ∈ 𝐿𝑖
𝑐 ← 𝑐 + 1

5) Color vertex 𝑣𝑖 with color 𝑐
6) If (𝑖 < 𝑛)

𝑖 ← 𝑖 + 1
Goto Step 2

7) Else

exit()

COLORING

The vertices may have assigned labels by n! ways 

… resulting to different visit orders, 

… and hence, to different color classes

… and different number of  colors! 
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)

COLORING

Heuristic Methods:
a) Vertices of  hgreater degree are harder to be colored

b) Edges with the same neighboring vertices have to be colored by the same color

c) The coloring of  multiple vertices with the same color is profitable. 
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• Largest First

o Initially the vertices are sorted in descending order w.r.t. their degree

o Assign colors to the nodes using the serial method

 First assign color to the vertex with the maximum degree, then to the

second etc.

• Theorem 18 (Welsh and Powell 1967):

If in a connected graph 𝐺 with vertex set 𝑉(𝐺) = {𝑣1, … , 𝑣𝑛} , where

𝑑 𝑣𝑖 ≥ 𝑑(𝑣𝑖+1) for 𝑖 = 1,⋯ , 𝑛 − 1 we apply the serial coloring algorithm,

then it holds:

𝑥 𝐺 ≤ 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑖, 𝑑 𝑣𝑖 + 1 , ∀ 𝑖
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• Smallest First (Matula – Marble – Isaacson 1972)

o Initially the vertices are sorted in descending order w.r.t. their degree

o The vertex with the smallest degree is deleted from the graph, alongside with

its adjacent vertices, as to be colored last.

o Update the degrees of the remaining vertices and repeat the procedure.

 The order is not necessarily the same with the one produced by the

Largest First algorithm.

• However, cases of tie (w.r.t. the degree of vertices) are treated at random.

o Combining the two previous approaches results to a more effective solution

that is called “color-degree method”.

o “Color degree” of a vertex 𝑣 refers to the number of colors used for the

coloring of its neighboring vertices.

COLORING
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)
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• The Problem:

o Finding the chromatic number of a random graph is an intractable problem.

o For small graphs exhaustive search may find this number, but for large

graphs any try is ineffective.

o Therefore, there have been proposed approximate algorithms.

1. Serial Graph Coloring

2. Largest First

3. Smallest Last (Matula – Marble – Isaacson)

4. Color Degree Method (Brelaz)

COLORING
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• Color Degree Method (Brelaz 1979)

Algorithm Brelaz

Input: A graph 𝐺(𝑉, 𝐸)

Output: A coloring of the graph.

1) Sort the vertices in descending order w.r.t. their degree

2) The vertex with the maximum degree is colored with the color “1”

3) Select the vertex with the maximum color-degree

4) If (∃ "tie")
Select the non-colored vertex with the maximum degree in the non-

colored graph.

5) Color the selected vertex with the minimum permitted color

6) If (∃ non-colored vertices)

Goto Step 3
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• Theorem 19 (Welsh and Powell 1967):

If a connected graph 𝐺 , 𝑛 ≥ 3 is bipartite, then the color-degree method

results to the chromatic number of the graph.

o Let a vertex 𝑣 of color-degree=2

o Let us assume that vertex 𝑣 has only two adjacent vertices with different

color.

o Utilizing sequentially only these colors there can be constructed two

different paths from these vertices.

o Since the graph is connected it should contain a cycle.

o Since the graph is bipartite, the cycle should have even length.

o Thus, the adjacent vertices of 𝑣 should have the same color, that is a

contradiction.
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• Course Schedule

We need to construct a weekly time schedule for our school with the minimum

total time under the following requirements:

1. Teacher 𝑋𝑖 (1 ≤ i ≤ m) teaches course 𝑌𝑗 (1 ≤ i ≤ n) for 𝑝𝑖𝑗 hours per

week.

2. In a specific hour, a teach may teach only one course, while each course

can be taught by only one teacher.

3. No teacher teaches more that 𝑝 hours per week, while no course is taught

more than 𝑝 hours per week.
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• Course Schedule

We need to construct a weekly time schedule for our school with the minimum

total time under the following requirements:

1. Teacher 𝑋𝑖 (1 ≤ i ≤ m) teaches course 𝑌𝑗 (1 ≤ i ≤ n) for 𝑝𝑖𝑗 hours per

week.

2. In a specific hour, a teach may teach only one course, while each course

can be taught by only one teacher.

3. No teacher teaches more that 𝑝 hours per week, while no course is taught

more than 𝑝 hours per week.

o The corresponding graph 𝐺 is 𝐾𝑛,𝑚, while vertex 𝑋𝑖 is connected with 

vertex 𝑌𝑗 through 𝑝𝑖𝑗 edges.

o The graph needs to be colored with the less colors possible.

o Through Th. 12, since the graph is bipartite, it holds that 𝑥’(𝐾𝑚,𝑛) = 𝑝. 

Hence, the total duration of  the schedule is 𝑝 hours.

o The chromatic polynomial defines the number of  ways this schedule can 

be constructed.
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• Coloring Bipartite Graphs

The problem of graph coloring in the general case is difficult, however in the

case of bipartite graphs, it is only needed to detect that the graph is bipartite in

order to decide that only two colors are needed for its coloring.

Algorithm Bipartite Graph Coloring

Input: A graph 𝐺(𝑉, 𝐸)

Output: A 2-coloring of the graph if the graph is bipartite.

1) Select arbitrarily a vertex 𝑣 ∈ 𝑉 and color it with color “1”

2) Enqueue(𝑄, 𝑣)

3) While(!isEmpty(𝑄))

1. 𝑢 ← Dequeue(𝑄)

2. 𝑠 ← 𝑁(𝑣)

3. If(∃ 𝑣 ∈ 𝑆 with the same color as 𝑢)

i. print(“non bipartite graph”)

i. color each vertex in 𝑆 with different color of 𝑢.

ii. Enqueue (𝑄, 𝑣), ∀ 𝑣 ∈ 𝑆

COLORING
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• k-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 𝑘 colors.

o 𝑘-Coloring is a function 𝑓: 𝑉 ⟶ {1, 2, … , 𝑘} such that for each edge (𝑥, 𝑦)

of 𝐺 it holds 𝑓 (𝑥) ⟶ 𝑓 (𝑦).

o If there exists such a function 𝑓 for a given graph 𝐺, then 𝐺 is 𝑘-colorable.

o How can we decide if a graph is 2-colorable?

COLORING



 The Coloring Problem is NP-Complete

85

• k-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 𝑘 colors.

o 𝑘-Coloring is a function 𝑓: 𝑉 ⟶ {1, 2, … , 𝑘} such that for each edge (𝑥, 𝑦)

of 𝐺 it holds 𝑓 (𝑥) ⟶ 𝑓 (𝑦).

o If there exists such a function 𝑓 for a given graph 𝐺, then 𝐺 is 𝑘-colorable.

o How can we decide if a graph is 2-colorable?

… find if the graph is Bipartite

COLORING
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• k-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 𝑘 colors.

o 𝑘-Coloring is a function 𝑓: 𝑉 ⟶ {1, 2, … , 𝑘} such that for each edge (𝑥, 𝑦)

of 𝐺 it holds 𝑓 (𝑥) ⟶ 𝑓 (𝑦).

o If there exists such a function 𝑓 for a given graph 𝐺, then 𝐺 is 𝑘-colorable.

o How can we decide if a graph is 2-colorable?

… however, for 𝑘 ≥ 3 the problem is NP-complete!!!
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• k-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 𝑘 colors.

o 𝑘-Coloring is a function 𝑓: 𝑉 ⟶ {1, 2, … , 𝑘} such that for each edge (𝑥, 𝑦)

of 𝐺 it holds 𝑓 (𝑥) ⟶ 𝑓 (𝑦).

o If there exists such a function 𝑓 for a given graph 𝐺, then 𝐺 is 𝑘-colorable.

o How can we decide if a graph is 2-colorable?

o One way to handle NP-completeness is to limit the problem to subsets of

input.

o We will show that 𝑘-Coloring problem in random graphs is NP-complete

even for 𝑘 = 3 !!!
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• 3-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 3 colors.
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• 3-Coloring

Given a graph 𝐺 = (𝑉, 𝐸), find out if there is proper coloring of 𝐺
using ≤ 3 colors.
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• NP-complete Problem Selection

We need to select a problem from the “pool“ of NP-Complete Problems for

Reduction !!! { SAT, 3SAT, CHam, TSP, IS, Clique,… }

• 3SAT

Given a Boolean formula in conjunctive form with at most 3 variables in each

term, find a satisfying assignment of truth values or report that there does not

exist any!!!

• We will show that :

a) 3-Coloring ∈ NP

b) 3-Coloring ∈ NP-hard: 3SAT ≤ 𝑝 3-Coloring
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• 3-Coloring ∈ NP

o Certificate/Verification: The graph 𝐺 with each of its vertices colored

with one color from the set {1,2,3}

o Verifier: Check if for each edge (𝑥, 𝑦) of 𝐺, the vertices 𝑥 and 𝑦 have

different colors. (The verifier demands 𝑂(𝑛2) time)

• 3-Coloring ∈ NP-hard: 3SAT ≤ 𝑝 3-Coloring

o Reduction: Given an instance 𝜙 of 3SAT, we will construct in polynomial

time an instance of 3-coloring (i.e., a graph 𝐺)

o Reduction Correctness: The graph 𝐺 is 3-colored iff the logical formula

𝜙 is satisfiable.

COLORING



 3SAT ≤ 3-Coloring

92

• 3-Coloring ∈ NP

o Certificate/Verification

o Verifier

• 3-Coloring ∈ NP-hard: 3SAT ≤ 𝑝 3-Coloring

o Reduction

o Reduction Correctness
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

• Start from the 3SAT Problem…

• Let 𝜙 an instance (Boolean Formula) of 3SAT wit 𝑘 terms 𝐶1, 𝐶2, … , 𝐶𝑘 (clauses)

and n variables 𝑥1, 𝑥2, … , 𝑥𝑛 (variables.)

o Reduction: Given an instance 𝜙 of  3SAT, we will construct in polynomial 

time an instance of  3-coloring (i.e., a graph 𝐺)

o Construct in polynomial time an instance 𝐺 of  problem 3-Coloring such that:

o If  𝜙 ∈ 3𝑆𝐴𝑇, then 𝐺 ∈ 3-Coloring

o If  𝐺 ∈ 3-Colring, then 𝜙 ∈ 3𝑆𝐴𝑇
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• For each variable 𝑥𝑖 (𝑥1, 𝑥2, … , 𝑥𝑛) of 𝜙, create 2 vertices in 𝐺, one for the

variable 𝑥𝑖 and one for ¬𝑥𝑖, and join them with an edge:

• Create 3 special nodes T, F and B and join them together:

• Join each vertex-variable with vertex B:
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖 gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖 takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-coloring on this graph defines a valid assigning of truth values in 𝜙

5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)

COLORING

a valid assignment

of  true values of 𝜙
Is it satisfying ???
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)

COLORING

a valid assignment

of  true values of 𝜙
Is it satisfying ???

FALSE!!!
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• Properties:

1. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖gets different color

2. Each vertex 𝑥𝑖 and ¬ 𝑥𝑖takes a different color from vertex 𝐵.

3. Vertices 𝐵, 𝑇 and 𝐹 take on a different color

4. So every 3-color it chart specifies a valid assigning true values of 𝜙
5. How? Set 𝑥𝑖: = True if node 𝑥𝑖 is colored as node 𝑇 (i.e., 𝑥𝑖 and 𝑇 have the

same color)

COLORING

a satisfying truth value
assignment of logical type 𝜙

Is it satisfying ???

FALSE!!!
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 



 3SAT ≤ 3-Coloring – Construction of  G

102

• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 



 3SAT ≤ 3-Coloring – Construction of  G

103

• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o For each term 𝐶𝑖 = (𝑎 ⋁𝑏⋁𝑐) of 𝜙, construct a gadget graph joining vertices

𝑥𝑝, 𝑥𝑞 and 𝑥𝑟 of 𝐺’ that correspond to the variables 𝑎, 𝑏, and 𝑐 and implements

the logical 𝑂𝑅.

COLORING

Gadget / OR – Graph 

Output Vertex

𝐶𝑖 = (𝑎 ⋁ 𝑏 ⋁ 𝑐) … the OR is modeled

utilizing three colores, namely {T,F,B} 
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o If all the variables 𝑎, 𝑏, 𝑐 are colored with color 𝐹, then the output vertex of

OR-Graph is colored with 𝐹 too.

COLORING
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o If all the variables 𝑎, 𝑏, 𝑐 are colored with color 𝐹, then the output vertex of

OR-Graph is colored with 𝐹 too.

o If at least one variable from 𝑎, 𝑏, 𝑐 has color 𝑇, the there exists a proper 3-

coloring of the OR-Graph, where output vertex has color 𝑇,

COLORING
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING

What would happen if  every 

variable a,b,c has value FALSE?
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING

What would happen if  every 

variable a,b,c has value FALSE?
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING

What would happen if  every 

variable a,b,c has value FALSE?
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING

What would happen if  every 

variable a,b,c has value FALSE?
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• The assignment of values to the variables 𝑥1, 𝑥2, … , 𝑥𝑛 should ensure the

satisfaction of each term 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝜙.

o The Gadget or OR-Graph

COLORING

What would happen if  every 

variable a,b,c has value FALSE?

Then the OR-Graph can not be 

colored with 3 colors
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• For each term 𝐶𝑖 = (𝑥𝑝⋁𝑥𝑞⋁𝑥𝑟) = (𝑎⋁𝑏⋁𝑐) of 𝜙, join with edges the vertices

𝑥𝑝, 𝑥𝑞, 𝑥𝑟 of the graph 𝐺′ with the vertices 𝑎, 𝑏, 𝑐, respectively, of the OR-Graph

COLORING

𝐺′ 𝑂𝑅 − 𝐺𝑟𝑎𝑝ℎ
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• For each term 𝐶𝑖 = (𝑥𝑝⋁𝑥𝑞⋁𝑥𝑟) = (𝑎⋁𝑏⋁𝑐) of 𝜙, join with edges the vertices

𝑥𝑝, 𝑥𝑞, 𝑥𝑟 of the graph 𝐺′ with the vertices 𝑎, 𝑏, 𝑐, respectively, of the OR-Graph

COLORING

𝑇ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝐺
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• If 𝝓 Satisfying ⇒ 𝑮 is 3-Colorable

o If 𝑥𝑖 = True, then color the node 𝑥𝑖 of 𝐺 with 𝑇 color and the node ¬𝑥𝑖 in

color 𝐹. If 𝑥𝑖 = False, then do the opposite.

o In each term 𝐶𝑖 = (𝑎 ∨ 𝑏 ∨ 𝑐) of 𝜙, at least one a variable of 𝑎, 𝑏 and 𝑐 has

True value.

o Therefore the OR-graph corresponding to 𝐶𝑖 can be colored with 3 colors.

o Therefore, the graph 𝐺 is colored in 3 colors.

• If 𝑮 is 3-Colorable ⇒ 𝝓 is Satisfying

o If node 𝑥𝑖 has the same color as node 𝑇, then 𝑥𝑖: = True, otherwise 𝑥𝑖: = False

(this is a valid assignment of values).

o Let 𝐶𝑖 = (𝑎 ∨ 𝑏 ∨ 𝑐) a term of 𝜙. At least one a variable of 𝑎, 𝑏 and 𝑐 has a

True value, because if all had a False value then the 𝐺 could not be colored with

3 colors (as we have shown before).

o So, 𝜙 is Satisfying.

COLORING



 3-Coloring Problem is NP-Complete
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.

COLORING
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.

COLORING
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.

COLORING



 3-Coloring Problem is NP-Complete

123

• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.
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• We can use the 3-Coloring problem to solve the 3SAT problem

• We have shown that 3SAT ≤ 3-Coloring: If we had a polynomial algorithm for

the 3-Coloring problem we could solve the 3SAT problem in polynomial time.

COLORING
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• 3-SAT is one of 21 NP-complete problems Karp, and is used as a reference

problem for proof of NP-completeness of other problems.

• This is done through polynomial-time-reference from 3-SAT to other problems.

• An example is the clique problem: Given a snapshot (Boolean formula) 𝜙 of

3SAT with 𝑘 terms 𝐶1, 𝐶2, … , 𝐶𝑘 (clauses) and 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛 (variables),

the corresponding graph consists of one node for each variable and an edge

between two non-contradictory variables of different types.

• The graph has a 𝑘-clique if the logical type is satisfiable.

COLORING


